\(\int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx\) [98]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 51 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=-\frac {\sqrt {d^2-e^2 x^2}}{d x}+\frac {e \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d} \]

[Out]

e*arctanh((-e^2*x^2+d^2)^(1/2)/d)/d-(-e^2*x^2+d^2)^(1/2)/d/x

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {864, 821, 272, 65, 214} \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=\frac {e \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d}-\frac {\sqrt {d^2-e^2 x^2}}{d x} \]

[In]

Int[Sqrt[d^2 - e^2*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[d^2 - e^2*x^2]/(d*x)) + (e*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 864

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(x/e))*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {d-e x}{x^2 \sqrt {d^2-e^2 x^2}} \, dx \\ & = -\frac {\sqrt {d^2-e^2 x^2}}{d x}-e \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx \\ & = -\frac {\sqrt {d^2-e^2 x^2}}{d x}-\frac {1}{2} e \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right ) \\ & = -\frac {\sqrt {d^2-e^2 x^2}}{d x}+\frac {\text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{e} \\ & = -\frac {\sqrt {d^2-e^2 x^2}}{d x}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.43 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=-\frac {\sqrt {d^2-e^2 x^2}}{d x}+\frac {e \log (x)}{\sqrt {d^2}}-\frac {e \log \left (\sqrt {d^2}-\sqrt {d^2-e^2 x^2}\right )}{\sqrt {d^2}} \]

[In]

Integrate[Sqrt[d^2 - e^2*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[d^2 - e^2*x^2]/(d*x)) + (e*Log[x])/Sqrt[d^2] - (e*Log[Sqrt[d^2] - Sqrt[d^2 - e^2*x^2]])/Sqrt[d^2]

Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.24

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{d x}+\frac {e \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\) \(63\)
default \(\frac {-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{d^{2} x}-\frac {2 e^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{d^{2}}}{d}-\frac {e \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )}{d^{2}}+\frac {e \left (\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}+\frac {d e \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{\sqrt {e^{2}}}\right )}{d^{2}}\) \(228\)

[In]

int((-e^2*x^2+d^2)^(1/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-(-e^2*x^2+d^2)^(1/2)/d/x+e/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.98 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=-\frac {e x \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) + \sqrt {-e^{2} x^{2} + d^{2}}}{d x} \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

-(e*x*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + sqrt(-e^2*x^2 + d^2))/(d*x)

Sympy [F]

\[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=\int \frac {\sqrt {- \left (- d + e x\right ) \left (d + e x\right )}}{x^{2} \left (d + e x\right )}\, dx \]

[In]

integrate((-e**2*x**2+d**2)**(1/2)/x**2/(e*x+d),x)

[Out]

Integral(sqrt(-(-d + e*x)*(d + e*x))/(x**2*(d + e*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=\int { \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{{\left (e x + d\right )} x^{2}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(-e^2*x^2 + d^2)/((e*x + d)*x^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 115 vs. \(2 (47) = 94\).

Time = 0.28 (sec) , antiderivative size = 115, normalized size of antiderivative = 2.25 \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=\frac {e^{4} x}{2 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d {\left | e \right |}} + \frac {e^{2} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |} \right |}}{2 \, e^{2} {\left | x \right |}}\right )}{d {\left | e \right |}} - \frac {d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}}{2 \, d x {\left | e \right |}} \]

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

1/2*e^4*x/((d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*d*abs(e)) + e^2*log(1/2*abs(-2*d*e - 2*sqrt(-e^2*x^2 + d^2)*abs
(e))/(e^2*abs(x)))/(d*abs(e)) - 1/2*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))/(d*x*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d^2-e^2 x^2}}{x^2 (d+e x)} \, dx=\int \frac {\sqrt {d^2-e^2\,x^2}}{x^2\,\left (d+e\,x\right )} \,d x \]

[In]

int((d^2 - e^2*x^2)^(1/2)/(x^2*(d + e*x)),x)

[Out]

int((d^2 - e^2*x^2)^(1/2)/(x^2*(d + e*x)), x)